

Disentangling Long and Short-Term Interests for Recommendation

Yu Zheng^{1*}, Chen Gao^{1†}, Jianxin Chang², Yanan Niu², Yang Song², Depeng Jin¹, Yong Li¹ ¹Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University ²Beijing Kuaishou Technology Co., Ltd.

WWW 2022

2022. 3. 22 ChongQing

Leibniz-Institut

Introduction

Long? Short?

$$v_1, v_2, v_3, \cdots, v_{(n-2)}, v_{(n-1)}, v_n$$

$$\zeta = \begin{cases} U_l = f_1(U), & (1) \\ U_s^{(t)} = f_2(U_s^{(t-1)}, V^{(t-1)}, Y^{(t-1)}, U), & (2) \\ Y^{(t)} = f_3(U_l, U_s^{(t)}, V^{(t)}, U), & (3) \end{cases}$$

case as a toy example, suppose a recommendation model entangles LS-term interests as follows,

$$U_l' = 0.6U_l + 0.4U_s, \ U_s' = 0.4U_l + 0.6U_s,$$
(4)

where U'_l and U'_s are the learned entangled interests. Given the fusion weights (importance) of LS-term interests as 0.8 and 0.2 respectively, the actual fused interests are computed as follows,

$$U'_{fuse} = 0.8U'_l + 0.2U'_s = 0.56U_l + 0.44U_s,$$
(5)

which is quite different from the desired interests.

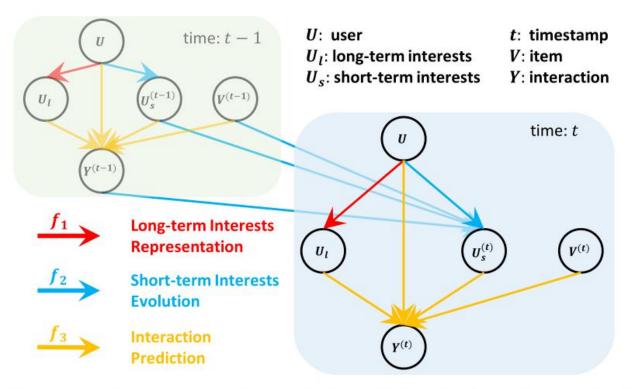


Figure 1: User interests modeling ζ (best viewed in color) which consists of three mechanisms, namely long-term interests representation (red edges), short-term interests evolution (blue edges) and interaction prediction (yellow edges).

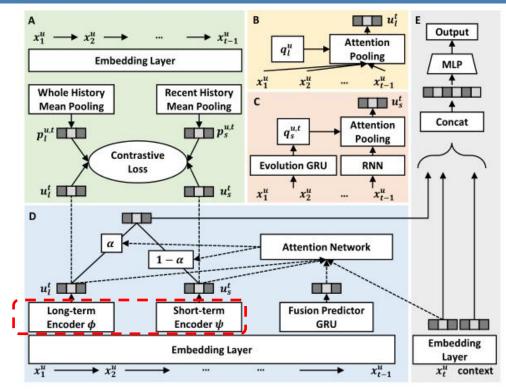


Figure 2: Our proposed CLSR framework based on selfsupervised learning. A) contrastive tasks on the similarity between representations and proxies of LS-term interests to enhance disentanglement; B) long-term interests encoder ϕ ; C) short-term interests encoder ψ ; D) adaptive fusion of LSterm interests with attention on the target item and historical interactions; E) interaction prediction network.

 ρ represents a RNN model.

 τ_l is a multi-layer perceptrons τ_l 映射到一维

1	$q_l^u = \text{Embed}(u),$	(6)						
1	$q_s^{u,t} = \text{GRU}([x_1^u] \cdots [x_t^u]),$	(7)						
	$\boldsymbol{u}_{\boldsymbol{l}}^{\boldsymbol{t}} = \phi(\boldsymbol{q}_{\boldsymbol{l}}^{\boldsymbol{u}}, \{\boldsymbol{x}_{1}^{\boldsymbol{u}}, \cdots, \boldsymbol{x}_{t}^{\boldsymbol{u}}\}),$	(8)						
	$\boldsymbol{u}_{\boldsymbol{s}}^{\boldsymbol{t}} = \psi(\boldsymbol{q}_{\boldsymbol{s}}^{\boldsymbol{u},\boldsymbol{t}}, \{\boldsymbol{x}_{1}^{\boldsymbol{u}}, \cdots, \boldsymbol{x}_{t}^{\boldsymbol{u}}\}),$	(9)						
4	$\boldsymbol{v}_j = \boldsymbol{W}_l \boldsymbol{E}(\boldsymbol{x}_j^u),$	(10)						
i	$\alpha_j = \tau_l(\boldsymbol{v}_j \ \boldsymbol{q}_l^{\boldsymbol{u}}\ (\boldsymbol{v}_j - \boldsymbol{q}_l^{\boldsymbol{u}}) \ (\boldsymbol{v}_j \cdot \boldsymbol{q}_l^{\boldsymbol{u}})),$	(11)						
ł	$a_j = \frac{exp(\alpha_j)}{\sum_{i=1}^t exp(\alpha_i)},$	(12)						
	$\boldsymbol{u}_{\boldsymbol{l}}^{t} = \sum_{j=1}^{t} a_{j} \cdot \boldsymbol{E}(\boldsymbol{x}_{j}^{u}).$	(13)						
1	$(-\mathcal{U}, -\mathcal{U}) = ((\mathcal{E}(-\mathcal{U}) - \mathcal{E}(-\mathcal{U})))$							
1	$\{o_1^u,, o_t^u\} = \rho(\{E(x_1^u),, E(x_t^u)\}),$ $w = W o^u$	(14)						
$v_j = W_s o_j^u$, (15) Time4LSTM [47]. Similar as Eqn (16) and (19), we use $q_s^{u,t}$ as the query vector, and obtain attention scores b_k . Then the learned representation for short-term interests can be computed as follows,								
 ``	$\boldsymbol{u}_{\boldsymbol{s}}^{\boldsymbol{t}} = \sum_{j=1}^{t} b_j \cdot \boldsymbol{o}_j^{\boldsymbol{u}}.$							

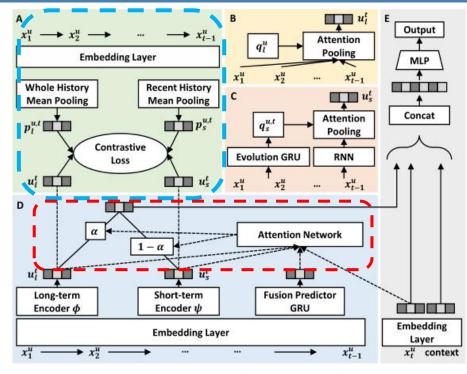


Figure 2: Our proposed CLSR framework based on selfsupervised learning. A) contrastive tasks on the similarity between representations and proxies of LS-term interests to enhance disentanglement; B) long-term interests encoder ϕ ; C) short-term interests encoder ψ ; D) adaptive fusion of LSterm interests with attention on the target item and historical interactions; E) interaction prediction network.

denotes a positive margin value. Both \mathcal{L}_{bpr} and \mathcal{L}_{tri} are designed for making the anchor *a* more similar to the positive sample *p* than the negative sample *q*. Thus the contrastive loss for self-supervised

$$p_{l}^{u,t} = \text{MEAN}([v_{1}^{u}, \dots, x_{t}^{u}]) = \frac{1}{t} \sum_{j=1}^{t} E(x_{j}^{u}), \quad (17)$$

$$p_{s}^{u,t} = \text{MEAN}(\{x_{t-k+1}^{u}, \dots, x_{t}^{u}\}) = \frac{1}{k} \sum_{j=1}^{k} E(x_{t-j+1}^{u}), \quad (18)$$

$$\Rightarrow sim(u_{t}^{t}, p_{l}^{u,t}) > sim(u_{t}^{t}, p_{s}^{u,t}), \quad (19)$$

$$sim(p_{1}^{u,t}, u_{t}^{t}) > sim(p_{1}^{u,t}, u_{s}^{t}), \quad (20)$$

$$sim(u_{s}^{t}, p_{s}^{u,t}) > sim(u_{s}^{t}, p_{l}^{u,t}), \quad (21)$$

$$sim(p_{s}^{u,t}, u_{s}^{t}) > sim(p_{s}^{u,t}, u_{t}^{t}), \quad (21)$$

$$sim(p_{s}^{u,t}, u_{s}^{t}) > sim(p_{s}^{u,t}, u_{t}^{t}), \quad (22)$$

$$\mathcal{L}_{bpr}(a, p, q) = \sigma(\langle a, q \rangle - \langle a, p \rangle), \quad (23)$$

$$\mathcal{L}_{tri}(a, p, q) = \max\{d(a, p) - d(a, q) + m, 0\}, \quad (24)$$

$$\frac{\mathcal{L}_{con}^{u,t}}{sop_{s}^{u,t}} = f(u_{l}, p_{l}, p_{s}) + f(p_{l}, u_{l}, u_{s}) + f(u_{s}, p_{s}, p_{l}) + f(p_{s}, u_{s}, u_{l})$$

$$sop_{s}^{u,t} = GRU(\{E(x_{1}^{u}), \dots, E(x_{t}^{u})\}), \quad (26)$$

$$\alpha = \sigma(\tau_{f}(h_{t}^{u} || E(x_{t+1}^{u}) || u_{t}^{t} || u_{s}^{t}), \quad (27)$$

$$u^{t} = \alpha \cdot u_{t}^{t} + (1 - \alpha) \cdot u_{s}^{t}, \quad (28)$$

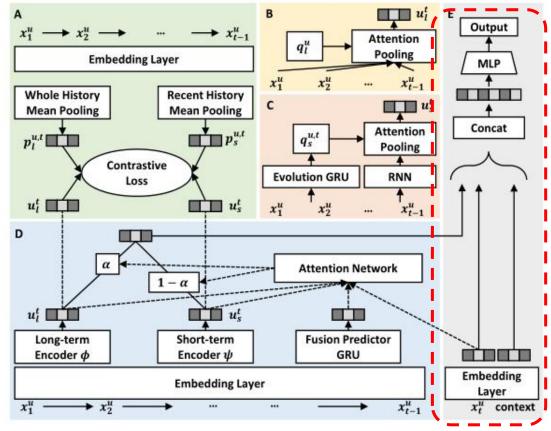


Figure 2: Our proposed CLSR framework based on selfsupervised learning. A) contrastive tasks on the similarity between representations and proxies of LS-term interests to enhance disentanglement; B) long-term interests encoder ϕ ; C) short-term interests encoder ψ ; D) adaptive fusion of LSterm interests with attention on the target item and historical interactions; E) interaction prediction network.

$\mathcal{L}_{\rm rec}^{u,t} = -\frac{1}{N} \sum_{u,v} y_{u,v}^{t+1} \log(\hat{y}_{u,v}^{t+1}) + (1 - y_{u,v}^{t+1}) \log(1 - \hat{y}_{u,v}^{t+1}), (30)$	$u_{u,v}^{t+1} = \mathrm{MLP}(\boldsymbol{u}^t \boldsymbol{E}(v)). $ (29)	۱ ۱
$N \underset{v \in O}{\overset{\sim}{\longrightarrow}} v_{v,v} = v_{v,v} + v_{v$	$= -\frac{1}{N} \sum_{v \in O} y_{u,v}^{t+1} \log(\hat{y}_{u,v}^{t+1}) + (1 - y_{u,v}^{t+1}) \log(1 - \hat{y}_{u,v}^{t+1}), (30)$	
$\mathcal{L} = \sum_{u=1}^{M} \sum_{t=1}^{T_u} \left(\mathcal{L}_{\text{rec}}^{u,t} + \beta \mathcal{L}_{\text{con}}^{u,t} \right) + \lambda \ \Theta\ _2, \tag{31}$	$= \sum \sum \left(\mathcal{L}_{\text{rec}}^{u,t} + \beta \mathcal{L}_{\text{con}}^{u,t} \right) + \lambda \ \Theta\ _2, $ (31)	

Table 2: Overall performance on Taobao and Kuaishou datasets.Underline means the best two baselines, bold means p-value< 0.05, * means p-value < 0.01, and ** means p-value < 0.001.</td>

Dataset		Taobao				Kuaishou			
Category	Method	AUC	GAUC	MRR	NDCG@2	AUC	GAUC	MRR	NDCG@2
	NCF	0.7128	0.7221	0.1446	0.0829	0.5559	0.5531	0.7734	0.8327
Long-term	DIN	0.7637	0.8524	0.3091	0.2352	0.6160	0.7483	0.8863	0.9160
	LightGCN	0.7483	0.7513	0.1669	0.1012	0.6403	0.6407	0.8175	0.8653
	Caser	0.8312	0.8499	0.3508	0.2890	0.7795	0.8097	0.9100	0.9336
	GRU4REC	0.8635	0.8680	0.3993	0.3422	0.8156	0.8298	0.9166	0.9384
Short-term	DIEN	0.8477	0.8745	0.4011	0.3404	0.7037	0.7800	0.9030	0.9284
	SASRec	0.8598	0.8635	0.3915	0.3340	0.8199	0.8293	0.9161	0.9380
	SURGE	0.8906	0.8888	0.4228	0.3625	0.8525	0.8610	0.9316	0.9495
IC tomm	SLi-Rec	0.8664	0.8669	0.3617	0.2971	0.7978	0.8128	0.9075	0.9318
LS-term	Ours	0.8953**	0.8936**	0.4372**	0.3788**	0.8563	0.8718	0.9382*	0.9544^{*}

Experiment



Figure 3: Comparison of using single and both interests between CLSR and Sli-Rec.

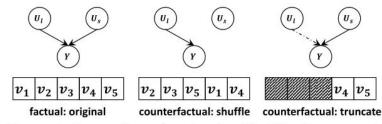


Figure 4: Counterfactual evaluation. Shuffle: short-term interests are removed by shuffling. Truncate: long-term interests are weakened by discarding early history.

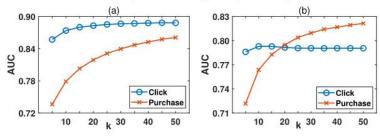


Figure 5: Counterfactual evaluation under truncate protocol. (a) CLSR. (b) CLSR with only long-term interests. Table 3: Comparison between CLSR and SLi-Rec on predicting click and purchase/like.

Detect	Method	C	lick	Purchase/Like		
Dataset		AUC	$AVG(\alpha)$	AUC	$AVG(\alpha)$	
Taobao	SLi-Rec	0.8572	0.4651	0.8288	0.4350 (-6.47%)	
Taobao	CLSR	0.8885	0.3439	0.8616	0.3568 (+3.75%)	
Kuaishou	SLi-Rec	0.8153	0.7259	0.7924	0.7543 (+3.91%)	
Kuaishou	CLSR	0.8618	0.2528	0.7946	0.2757 (+9.06%)	

Table 4: Counterfactual evaluation under shuffle protocol.

Detect	Method	Cl	ick	Purchase/Like		
Dataset		AUC	MRR	AUC	MRR	
Taobao	SLi-Rec CLSR	0.8092	0.2292	0.8480	0.3151	
	SLi-Rec	0.8413 0.7992	0.2744	0.8790 0.8165	0.4194	
Kuaishou	CLSR	0.8431	0.9380	0.8197	0.9167	

Experiments

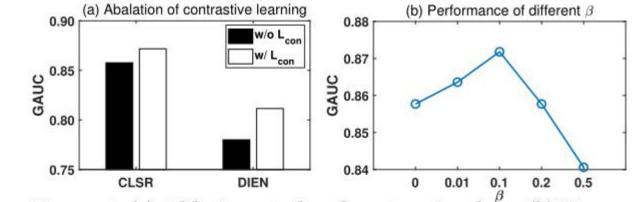
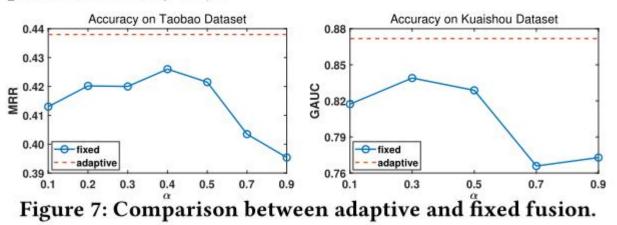


Figure 6: (a) Ablation study of contrastive loss. (b) Hyperparameter study of β .



Thanks